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Abstract

In a disease outbreak context, disease cases are usually presented
by using point distribution data. Due to the scale-invariant issue of
point data and the scaling issue of the modifiable areal unit problem,
identifying a critical scale for the analysis of point patterns, such as the
clustering phenomenon, is important. This study proposes a novel data-
driven framework for calculating the critical scale based on two traditional
concepts: (1) the point-region quadtree spatial indexing method and (2) the
box counting method for fractal pattern analysis. Both concepts capture
the spatial scaling process and serve as the core concepts of the proposed
framework. Using dengue fever cases in Kaohsiung City, Taiwan, during
the past two decades, the critical scale was identified for each outbreak
year. Two clustering analysis approaches were used to test the resulting
critical scales, including kernel density estimation and density-based spatial
clustering application with noise. Both clustering analyses involved distance
parameter settings. Therefore, through the setting of search radii, the two
clustering methods were used as a tool to explore the clustering patterns
under different scale levels. In summary, the identified critical scales can

better capture the spatial patterns of point data.
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1. Introduction

Unlike other spatial data, point data is scale invariant (Cressie 1993;
Goodchild and Mark 1987). A point located in a district can also be
observed as being located in a city or country. Three points located in the
same city can be seen as a cluster if viewed at the country level, but the
three points may be located in three different districts, creating a dispersed
pattern at the district level. Similarly, when many disease cases occur in
one district, these cases can be seen as one cluster if viewed at the country
level, but they can also be considered dispersed if viewed from a building or
village level (i.e., the cases locate in different parts of the district). The point
pattern can therefore be analyzed with various scales for the same point
data set. This led to this study’s main research question: What is the optimal
scale for analyzing point patterns?

Scaling studies provided a direction to answer this question. Previous
studies suggested that some point events experienced the scale-invariant
phenomenon, where the clustering pattern on a lower scale can also be
observed on a higher scale (Agterberg 2013; Frankhauser 2015). These
point patterns tend to be self-similar across scales. This scale-invariant
phenomenon indicates that some point events or point distributions have
a scaling nature, which means that the clustering pattern exists at different
scales (Goodchild 2011). In simple words, several points occur near each
other, forming a cluster; when zoomed out, the view reveals that many
clusters occur beside each other, forming a cluster of clusters. This situation
suggests that a range of scales presents a similar point distribution pattern.

However, the well-studied modifiable areal unit problem (MAUP),
also called the Openshaw effect (Goodchild 2022), indicates that point
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distribution suffers from a zoning and scaling problem (Gerell 2017;
Openshaw 1981). The scaling problem states that when one aggregates the
same set of points into different areal units (e.g., county and district level
administrative boundaries), the aggregated patterns observed through the
two levels of boundaries can yield different observations. While the MAUP
raises a counterargument to the aforementioned scaling phenomenon, this
situation also means that the range of scales has a limit—when the scale is
beyond a particular level, the pattern may change.

Analyzing point scaling produced a similar finding. The analysis
of the point distribution’s fractal pattern (Agterberg 2013; Carlson 1991;
Frankhauser 2015) suggested that a bi-fractal pattern exists in most point
distributions (Agterberg 2013; Raines 2008). Indeed, when the number of
occupied boxes (OB) was plotted against the box size—the standard box
counting method for fractal analysis—a turning point (i.e., the roll-off effect,
also called the fall-off effect) continually occurred. The existence of a turning
point means that when the box becomes smaller (higher resolution) from
larger (lower resolution), the number of OB increases at a constant rate (a
straight and steep increasing line) before the turning point. After the turning
point, the increment rate becomes a flat line, which indicates that the scaling
of boxes yields a different pattern when the box continues to become smaller
(higher resolution). A bi-fractal pattern is often observed in empirical studies
of geographical characteristics, such as urban forms or population distribution
(White and Engelen 1993; White et al. 2015), which means that the roll-
off effect (i.e., the small scales where the patterns are not aligned with the
global structure) was not representative of the point pattern analysis; these
scales were thus usually excluded or truncated (Agterberg 2013; Pickering
et al. 1995). This situation suggests that the small scales were not useful for

exploring the point patterns due to their locality (only occurring in a small
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part of the area) and conflict with the overall (or global) spatial pattern
(Pickering et al. 1995; Walsh et al. 1991). In previous studies, the critical scale
was defined as the scale’s midpoint where the global pattern that represents
the overall spatial structure intersects the local pattern that occurs in only a
certain region (Velazquez et al. 2016; Wiegand and Moloney 2004). The roll-
off effect and the existence of a turning point provide a hint for identifying the
optimal scale for analyzing point distribution.

In this study, the roll-off effect was utilized to identify the critical scale
of point distribution. This study used the scaling process and analysis of
point distribution from the fractal pattern analysis field, scaling the study
site from a low scale level (low resolution and large boxes) to a high scale
level (high resolution and small boxes). The scaling process indicated that
more spatial information is revealed when the scale level is increased. The
critical scale is defined as the highest scale level before the turning point
(i.e., the scale level containing substantial detail on spatial point distribution
while not being overly detailed). In this study, a framework was proposed
to investigate spatial point patterns and identify the critical scale. In the
framework, the point-region quadtree (PR-Qtree) data structure is used to
construct a two-dimensional point distribution quadtree structure to analyze
the spatial scaling process. This study used the box counting method to
conceptualize and analyze the scaling process (Agterberg 2013; Sémécurbe
et al. 2016). Dengue fever cases that occurred in Kaohsiung City, Taiwan,

were used as case studies to demonstrate the analysis framework.

I1. Materials and Method

A framework for analyzing the point distribution’s scaling pattern is

proposed (Figure 1). This framework can be used to identify point patterns’
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Figure 1. The calculation framework for identifying the critical scale

Note: PR-Qtree: point-region quadtree.

critical scale. The PR-Qtree data structure was used as the framework’s
foundation, and the box counting method—a calculation process developed
in the study of fractal dimension (FD)—was applied. To use the PR-
Qtree for box counting, one must execute a level-down procedure before
performing the calculation. The following subsections describe the research
design and experiment, followed by the procedures that reflect the proposed

framework.

Research Design and Experiment

The cases of dengue fever that occurred in Kaohsiung City, Taiwan,
for eight years were used to demonstrate the proposed method’s application.
The data was selected from 22 years (1998-2020, excluding 2000, which has
no data) of dengue fever cases from Taiwan’s Opendata platform (Taiwan
Centers for Disease Control 2022). The original data provides the daily

number of dengue fever cases by the basic statistical area, the smallest



} Wei Chien Benny Chin

statistical spatial unit in Taiwan. In this study, each case was reassigned to
a random point location within the basic statistical area. Because dengue
fever has a yearly cyclic pattern in Taiwan, the daily cases were split and
aggregated according to the outbreak years, that is, from April of the outbreak
year to March of the following year. A study area focusing on the core region
of Kaohsiung City (east-west direction: 174 km to 187 km; north-south
direction: 2,497 km to 2,510 km; projection: EPSG 3826) with a size of 13 x
13 km” was used throughout the study. The cases were filtered by study area,
and Table 1 reveals the number of cases in the study area by outbreak year.
The eight years with more than 400 cases (2002, 2006, 2009, 2010, 2011,
2012, 2014, and 2015) were selected to demonstrate the OB and ratio in the
result’s first section. Four years of data with different sizes, including 2011

(1,089 cases), 2002 (4,188 cases), 2014 (12,897 cases), and 2015 (16,392

Table 1. The number of dengue fever cases within the study area by outbreak

year
Year of Number of Year of Number of
No outbreak cases No. outbreak cases
1 1998 86 13 2010 966
2 1999 3 14 2011 1,089
3 2000 No data 15 2012 432
4 2001 216 16 2013 81
5 2002 4,188 17 2014 12,897
6 2003 12 18 2015 16,392
7 2004 52 19 2016 28
8 2005 105 20 2017 23
9 2006 851 21 2018 51
10 2007 151 22 2019 97
11 2008 278 23 2020 4
12 2009 620 24 2021 No data
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cases), were chosen for clustering analyses. A small data set (23 cases) from
outbreak year 2017 was used for the method’s description below.

Three parts of the analyses were presented in the result section: (1)
the OB and ratio from the calculation; (2) the kernel density estimation
(KDE) analysis that used different bandwidths to demonstrate the effects of
different scale levels; and (3) the density-based spatial clustering application
with noise (DBSCAN) analysis that used different searching radii (epsilons)
to search for neighboring events. KDE is an approach to measuring the
concentration levels of point events within a specified distance based on
a kernel function (Scott 1992; Silverman 1986). The kernel function is
usually a Gaussian distribution (i.e., bell shape), and it is used to determine
the weight of a point at a distance from each of the target cells. The distance
parameter (i.e., bandwidth) is used to define the Gaussian distribution’s
shape. A shorter bandwidth generates a narrower kernel function and vice
versa. DBSCAN is an approach for identifying individual clusters from
point event data (Ester et al. 1996; Schubert et al. 2017). In the DBSCAN
calculation, the distance parameter is a search radius for neighbors—other
points within the distance—from each target point. With another minimum
point parameter, if a point has numerous neighbors (i.e., more than the
minimum point parameter), the point is identified as a core point (i.e., a
high-density point). A cluster is detected as a group of connected core points
through the connections between core points that fall within the distance
parameter.

For KDE and DBSCAN, a distance parameter was key to determining
the density or clustering relationships, which makes the two methods
suitable for exploring the point patterns at different scale levels. The
different distance parameter settings based on the scale levels for the

same group of points were thus tested to compare the resulting density or
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clustering pattern with the distance parameter set as the search radius of
various scale levels. KDE (with Gaussian kernel function) and DBSCAN
are performed with the Python scikit-learn package (1.2.1), and the PR-
Qtree and critical scale calculations are written in the Python (3.9.15)

scripting language.
PR-Qtree

The PR-Qtree (Orenstein 1982; Samet 1984) is a quadtree data
structure that can be used as a spatial indexing approach to increase the
performance of point and range queries. As with other two-dimensional
quadtree approaches (Venables and Ripley 2002), a PR-Qtree divides the
spatial area into four sub-spaces to store the points. In this study, a PR-
Qtree divided a two-dimensional study space into equal-sized hierarchical
quadrants to store each point in one quadrant cell. Since each depth level in
a PR-Qtree indicates a specific quadrant box size, the depths can represent
spatial scale levels. A PR-Qtree is therefore suitable and convenient for
analyzing the points’ scaling properties.

Figure 2 presents a demonstration of inserting four points into the PR-
Qtree. Inserting point A (Figure 2[a]) is straightforward. Since no other
points are in the tree/space, one large box covering the entire study area is
generated as the root node, and the first point occupies the large box (depth-0
level; Figure 2[e]). Inserting point B (Figure 2[b]) causes the first box to
contain two data points; the box is thus divided into four quadrant boxes (four
branches in the tree, each represents a quadrant box), and the two points
(A and B) are then moved to depth-1 level (Figure 2[f]). Similarly, when
point C is inserted, it colocates with point B in the upper left box (Figure
2[c]); the box/branch is therefore split, and points B and C are moved to the
depth-2 level branches (Figure 2[g]). Point D (Figure 2[d]) does not share
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a box with other points; inserting point D can thus be achieved by adding a

node at the empty branch (Figure 2[h]).

Level-Down

The PR-Qtree was not designed to be used as an analysis tool. To use
it as the foundation for the box counting method, one needs an additional
procedure to prepare the tree for the box counting calculation. The box
counting of different scale levels relies on the number of nodes at each
depth level. For example, in Figure 2, points A and D stop at the depth 1
level, which means that the two points would not have any records at a
lower level (e.g., depth 2). This study introduced the level-down process,
which pulls all points (i.e., leaf nodes, also called black nodes) to the lowest
depth level. All points therefore have a parent node (i.e., gray node) on all
depth levels above the leaf node, and the total count of black nodes is the

total number of points.

a. Insert point A: box b. Insert point B: box c. Insert point C: box d. Insert point D: box
B B B
oC oC
oD
oA oA oA oA
. Insert point A: tree f. Insert point B: tree g. Insert point C: tree h. Insert point D: tree
® @ ® @
® ® ® ® ® O ®
® © ® ©

Figure 2. Example of inserting four points into a point-region quadtree (PR-

Qtree)

Note: The four points were extracted from the dengue fever at Kaohsiung City in 2017 for
demonstration.
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Figure 3 depicts the boxes before and after the level-down process for
the dengue fever cases of 2017. Altogether, 23 points were inserted. Several
large OB existed before the level-down process (Figure 3[a]). Nevertheless,
all OB were split to the lowest level after the level-down process (Figure
3[b]).

In summary, through the PR-Qtree conversion (including the level-
down process), a point distribution can be converted into a quadtree
structure that is almost unique for a specific set of points. The PR-Qtree
stores the point pattern in a hierarchy structure that preserves the scaling
relationships between OB of different levels—an occupied child box must
have an occupied parent box, and an occupied parent box must have at least
one occupied child box. The tree’s depth represents different scale levels.
The study area for the data sets used in this study was 13 x 13 km”. Table 2

provides each scale level’s corresponding box size.

a. Before b. After
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Figure 3. Comparison of the resulting boxes between before and after level-
down
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Table 2. The corresponding box sizes (side length) and the radius (half of

the side length) of each scale level

Scale level Size ratio Box size (m) Radius (m)
0 1:2° 13,000.000000 6,500.000000
1 1:2' 6,500.000000 3,250.000000
2 1:2° 3,250.000000 1,625.000000
3 1:2° 1,625.000000 812.500000
4 1:2¢ 812.500000 406.250000
5 1:2° 406.250000 203.125000
6 1:2° 203.125000 101.562500
7 1:27 101.562500 50.781250
8 1:2° 50.781250 25.390625
9 1:2° 25.390625 12.695312
10 1:2° 12.695312 6.347656
11 1:2" 6.347656 3.173828
12 1:2" 3.173828 1.586914
13 1:2" 1.586914 0.793457
14 1:2" 0.793457 0.396729

The FD and the Box Counting Method

To empirically measure the fractal geometry of geographical features
in the real world, researchers have introduced the box counting method and
applied it to geographical studies (Caballero et al. 2022; Feng and Chen
2010; Frankhauser 2015; Jiang and Liu 2012; Wu et al. 2020). In simple
words, the box counting method measures fractal geometry by quantifying
the OB on different scale levels. For example, Figure 4 presents the
counting of OB at the six levels. Level 0 has only one box, and all points fall
inside it; the count is thus OB = 1. At level 1, the previous box was divided
into four quadrants, and all four boxes contained some points; the count is

therefore OB = 4. For level 2, five out of 16 boxes were empty; the count
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a. scale=0, 0B =1

c. scale =2, OB =11

scale =1,

OB =4

d. scale =3, OB =16
v

Figure 4. The counting of occupied boxes (OB) in the first 6 scale levels

is thus OB = 11. Similarly, for levels 3-5, the shaded boxes highlighted the
points’ locations, and the counted boxes totaled 16, 21, and 22, respectively.
Level 5 has only one box containing more than one point. The total number
of points in this data set is 23, and the lowest depth is level 6, where the last
two points were split into independent boxes.

With the traditional box counting method using box sizes (/, side
length) and counts, the point distribution’s FD can be calculated by fitting
the slope (Equation [1]) of the line in the box size (log, /, horizontal axis)
to the box count (log, OB, vertical axis) plots (Frankhauser 2004, 2015). In
a standard box counting calculation, the horizontal axis is the box length;
when the box’s length increases, the box becomes larger, and the number of
OB decreases. The slope of the line is therefore expected to be negative, and

the FD is the negative of the slope value (conversion to positive).

13 -
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Again, the tree’s depth captures the concept of scale level (scale = {1,
2, 3, ...}) and each scale level corresponds to a specific box size (or side
length, /,.; Table 2). The FD calculation can be simplified with the PR-
Qtree. The side length of each cell at a depth level can be calculated as the
result of dividing the entire side length (L) by 2 with an exponent of the

scale level, that is, 7, = L/2*““ (see Appendix 1). Equation (2) could thus

scale

be used to convert the box size (side length) to scale level in this study.

O, e e 2
scale =-log, I 2

Based on Equations (1) and (2), the FD can be simplified as illustrated
in Equation (3) (see Appendix 2) using the scale levels and corresponding

occupied box count (OB,

scale.

). No negative sign occurs in the equation, which
indicates that the two variables’ slope is positive (i.e., the higher the scale
level, the higher the log number of OB). This change occurs because the
scale level starts from the largest box (scale = 0) to smaller boxes, and the
number of OB increases in this scaling process. Because the calculation
in the following section is similar to the FD calculation, in this paper, the

FD is denoted as the S,; (i.e., slope calculated from the OB plot) since it is

calculated based on OB, .
_ 10g2OBscale —
R T 3)

The Identification of Critical Scale

Previous studies have indicated that the distributions of geographical
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point events reveal a bi-fractal pattern (Agterberg 2013; Chen and
Wang 2013; Tannier and Pumain 2005; Thomas et al. 2008) due to the
geographical features’ scaling nature (Batty 2008; Goodchild and Mark
1987). This phenomenon leads to the roll-off effect, where a turning point
of scale exists between the scale ranges (Agterberg 2013; Pickering et al.
1995; Walsh et al. 1991). Conceptually speaking, the turning point of scales
indicates that the range of scales before the turning point experiences self-
similar properties across scales—the global fractal pattern. The range of
scales after the turning point experiences the roll-off effect, which means
that the distribution surpasses the explanation of the global fractal pattern—
a local fractal pattern that occurs in only some parts of the study area
(Velazquez et al. 2016; Wiegand and Moloney 2004). In this study, the
turning point of scales is called the critical scale because it represents the
optimized and finest scale level that the global fractal pattern can explain
and starts to turn into the local fractal pattern.

Equation (4) introduces an index, the occupied ratio (OR,,.), to
calculate the critical scale. The OR,,, converts the OB

dividing the OB

into a ratio by

scale scale

scale

by the total number of boxes at each level. The total
number of boxes (occupied and unoccupied) equals 4 with an exponent

of the scale level. Dividing the OB

scale

by the total number of cells at each
depth converts the value into a unit interval that represents the coverage

ratio (i.e., OR, ,;.)-

OR, = o et 4)

scale 43 cale

While the OB

scale

emphasizes the increment of the number of boxes at

the earlier stage (i.e., lower scale levels), the OR, . emphasizes the changes

scale

of the OB to the total box counts at the later stage (i.e., higher scale levels),

15 -
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where the increment of OB is slow (i.e., the reasons why the scale levels
experience the roll-off effect). In the roll-effect stage, increasing a level
creates a large number of total boxes, but the increment of the OB, is

relatively slow, which leads to a steep decreasing trend for the OR,.,,. The

scale*
log OR,.,,. should thus be negatively correlated to the scale levels. Similar to

the S, that is fitted from the OB

scale>

here, the local fractal pattern (S,;) can

be calculated based on the OR,,,, (Equation [5]).

log,OR,,..
COBIIIE oo (5)

S =
Ok scale

Sop and S, can be calculated only when a cut-off point is determined.
The cut-off point can be any scale level between the minimum and
maximum scale levels (0 < cut-off level < last scale level). The scale levels

before the cut-off and the corresponding OB

scale

are used to calculate the S,

while the scale levels after the cut-off and the corresponding OR, . are used

scale
to calculate the S, (Figure 5). An optimization model is used to identify
the scales’ optimal cut-off point (i.e., turning point) so that the OB’s slope
and the ratio have the highest fitness. The fitness function (see Figure 5[c]
in the optimization model) is the multiplication of the correlation coefficient
between the fitted line (calculated based on S, and S,;) and the data points
(i.e., OB,.,, and OR_.,.

scale ). The model attempts to fit the OB
[3]; Figure 5[a]) and the OR

line (Equation

scale
e 1In€ (Equation [5]; Figure 5[b]) using the
same cut-off, which can be any of the scale levels in the range. The dashed
blue and red lines in Figures 5(a) and 5(b), respectively, indicate the fitted
line. The Pearson correlation coefficients between fitted lines and data for
global and local patterns were calculated (the blue and red lines in Figure

5[c]) and multiplied to compute fitness for each level in the range (the black
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line in Figure 5[c]). The model attempts to slide the cut-off value (i.e., the

turning point of scales) in OB, and OR

plots, calculate the fitting lines,

and then maximize the two correlation results concurrently.

a. OB scale

b' ORscale

fitting

3 4 5 6
Scale level

c. Fitness by scale level

Scale level

d. Points and occupieed boxes
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Figure 5. The calculation of the critical scales using the (a) occupied box

count (OB

scale

) plot and (b) occupied ratio (OR

) plot. (c) The

scale

level-2 is identified as the scale level with the highest fitness value.
(d) The resulting optimal scale level (gray boxes) and the areas

that contain multiple points (red boxes)

Note: See the online version (https://doi.org/10.6191/JPS) for the full-colored figure.
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II1. Results

Critical Scales of the Outbreaks in Various OQutbreak Years

The critical scales for each outbreak year were calculated and are
disclosed below (Table 3). The S, and S,; were meant to be between 1 and
2. The critical scales ranged from 1 to 8 and depended on the number (N)
of points (i.e., the larger the number of points, the higher the critical scales).
This result aligned with the expectation that when the point event count
is large, the scale level must be higher (higher resolution) to explore and
describe the spatial pattern.

According to Table 3, the outbreak years with more cases (e.g., N >
400) tend to have a critical scale between 4 and 8. The critical scales seem
to follow a semi-log relationship, log(N), with the sample size (V) because it
is derived using the PR-Qtree approach. A tree-based data structure tends to
have a depth of log(N). Although the critical scale did not reach the lowest
depth, it reveals a semi-log relationship.

Figure 6 depicts the OB and occupied ratio plots for the eight years with
N >400. Complementing what Figure 5 demonstrates, the OB increased as a
straight line from the beginning, and the occupied ratio decreased as a straight
line at the end. The critical scale was a turning point after the OB

et S Straight
line and before the OR

’s straight line started. Since Figure 5 presents a

scale

demonstration using data from outbreak year 2017 (23 points), the OB, and

scale
the OR,,,.. stopped at scale level 6 (i.e., the last scale level). With the number
of points exceeding 400, the resulting lines in Figure 6 present a similar

structure; however, the last scale levels were larger than 10 (e.g., outbreak
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Table 3. The slopes of the occupied box (S,,) and occupied ratio (S,) lines,

the critical scale, and corresponding box size (length of each side)

for the 22 years of data
No. Year N Sos Sor Critical scale Box size (m)
1 1998 86 1.85 1.67 2 3,250.00000
2 1999 3 1.00 2.00 1 6,500.00000
3 2001 216 1.79 1.58 2 3,250.00000
4 2002 4,188 1.69 1.86 6 203.12500
5 2003 12 1.58 1.81 1 6,500.00000
6 2004 52 1.73 1.71 2 3,250.00000
7 2005 105 1.79 1.64 2 3,250.00000
8 2006 851 1.60 1.78 5 406.25000
9 2007 151 1.85 1.70 2 3,250.00000
10 2008 278 1.95 1.62 2 3,250.00000
11 2009 620 1.70 1.72 4 812.50000
12 2010 966 1.61 1.80 5 406.25000
13 2011 1,089 1.64 1.80 5 406.25000
14 2012 432 1.064 1.70 4 812.50000
15 2013 81 1.95 1.69 2 3,250.00000
16 2014 12,897 1.75 1.86 7 101.56250
17 2015 16,392 1.69 1.90 8 50.78125
18 2016 28 2.00 1.57 1 6,500.00000
19 2017 23 1.73 1.74 2 3,250.00000
20 2018 51 1.59 1.85 3 1,625.00000
21 2019 97 1.90 1.70 2 3,250.00000
22 2020 4 1.00 2.00 1 6,500.00000

years 2014 and 2015 were 15 and 14, respectively), which indicates that while
the calculations could be scaled up to a large number of points, the patterns
remained stable, and the critical scales scaled up depended on the semi-log

relationships with the number of points.
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Figure 6. The occupied box (OB,,,,) (increasing) and occupied ratio (OR, ;)
(decreasing) plots for the eight selected years
Note: See the online version (https://doi.org/10.6191/JPS) for the full-colored figure.

The KDE Based on Varying Bandwidth

To test the results, the KDE (grid cell size = 50 m) using the different
bandwidths for the four selected outbreak years: 2011 (1,089 cases),
2002 (4,188 cases), 2014 (12,897 cases), and 2015 (16,392 cases), were
calculated. The corresponding critical scales for the four years (2011, 2002,
2014, and 2015) were 5, 6, 7, and 8, respectively; we therefore presented the
four sets of KDE results, including the four bandwidth settings for the four
scale levels (5-8) as selected scale levels, to compare the spatial patterns
based on the four bandwidths. Because the bandwidth setting for the KDE
calculation was a search radius that formed a circle surrounding the centers

of each cell and measured the weighted point numbers that fell within the
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circle, the bandwidth was set as half of the box length (Table 2) for the four
selected scale levels.
Figure 7 presents the four sets of KDE (columns) for the four outbreak

years (rows). For outbreak year 2011 (Figure 7, top row), the critical scale

a. 2011, scale =5 b. 2011, scale = 6 c. 2011, scale =7 d. 2011, scale = 8
I\ T ) ™

=

'N\\/\_‘
.

€. 2002, scale =5

k"“\\/J\‘p{ =

Uy o9 ’ E
N (|

2 km
i. 2014, scale = 5 j. , 1. 2014, scale = 8
1 1\ i 1.\) W

\

p. 2015, scale = 8

Figure 7. The result of kernel density estimation (KDE) using bandwidth
settings of four scale levels (5-8) on the four selected years (2011,
2002, 2014, and 2015)

Note: The bandwidth (radius) was set to be half of the box length of the corresponding scale
levels. The boxes indicate the range of the map in the next figure.
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was 5. In the comparison between the four bandwidth settings, the first map
(Figure 7[a]; scale = 5, bandwidth = 203.1250 m) revealed a suitable pattern
for observations since it indicated a few clusters with a clear pattern on the
map, while the second map (Figure 7[b]; scale = 6, bandwidth = 101.5625 m)
captured only the largest cluster on the previous map, which was presented as
a small and isolated cluster; the other groups of points were presented mostly
as dispersed and scattered points. At scale levels 7 and 8 (Figures 7[c] and
7[d]), no clusters were identified. For outbreak year 2002 (Figure 7, second
row), the first map (Figure 7[e]; scale = 5, bandwidth = 203.125 m) reveals
about three clusters. The second map (Figure 7[f]; scale = 6, bandwidth =
101.5625 m) presented more details on the largest cluster, and the two smaller
clusters became small and isolated clusters as in the previous year (Figure
7[b]). No cluster can be found on the other two maps (scale levels 7 and 8;
Figures 7[g] and 7[h]). The critical scale for outbreak year 2002 was level 6
(bandwidth = 101.5625 m). The results from the two years indicated that with
several points between 1,000 and 5,000, the bandwidth settings of levels 5 and
6 (203.1250 m and 101.5625 m, respectively) can present sufficient details of
the spatial distributions and thus be used as observation scales for the point
data in the two outbreak years.

The last two rows of Figure 7 reveal the KDE of outbreak years 2014
and 2015, which contained numerous cases (12,000-16,000) compared to
those in the first 2 rows. The first column (Figures 7[i] and 7[m]; scale = 5,
bandwidth = 203.1250 m) indicates that several clusters appeared in different
parts of the study area. These clusters merged, making them difficult to
differentiate. These points were indeed seen as a large cluster if viewed from
a higher level (e.g., the city scale). Nevertheless, with the study area extent
that reveals only the fixed region, the analysis aimed to identify the spatial

patterns within the study area (i.e., the local pattern). Depicting them as a
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large cluster covering almost the entire study area did not help describe the
pattern. The second column (Figures 7[j] and 7[n]; scale = 6, bandwidth =
101.5625 m) presents some spatial details, but some of these clusters were
still merging. For the last two columns (Figures 7[k]-7[1] and 7[0]-7[p]), while
some patterns were displayed, the main patterns were difficult to observe with
the entire study area and the current cell sizes (50 m). A smaller region (black

boxes) was thus highlighted and is presented in Figure 8.

a. 2014, scale =7 b. 2014, scale = 8

N

500 m 500 m

c. 2015, scale =7 d. 2015, scale = 8

Figure 8. The zoom-in views of kernel density estimation (KDE) results for
the year 2014-2015, based on scale levels 7-8
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Figure 8 demonstrates the smaller region (the black box in Figure 7)
KDE (grid cell size = 10 m) of outbreak years 2014 and 2015 using the
bandwidths of the last two scale levels (scale = 7, bandwidth = 50.781250
m and scale = 8, bandwidth = 25.390625 m). Based on the calculation, the
critical scale for 2014 was 7, and for 2015, it was 8. When the researchers
used a finer resolution and smaller bandwidth, the resulting KDE presented
more details of the spatial distribution over the two years. The KDE with
scale = 8 for outbreak year 2014 seems slightly scattered, and the western
group of clusters became less concentrated. For outbreak year 2015, the
spatial distribution provides even more spatial details with scale = 8 than
the previous scale level (scale = 7). Compared to the lower scale levels (scale
=5 and scale = 6), scale levels 7 and 8 were more suitable.

In summary, the KDE observations indicated that the suitable KDE
bandwidth tends to be similar to and near the critical scale result. We
therefore argue that critical scales can provide a better observation of point
patterns. Since the critical scale is a scale of analysis, it indicates a range of
distance (i.e., the distance from critical scale — 1 to critical scale + 1), which
can be effective for the parameter settings of the search radius distance in
a distance-based density estimation method. However, this study cannot
identify a specific distance value for the search radius setting because the

scaling process indicates a division of the length by 2, which declines fast.

The DBSCAN Based on Different Epsilons

In this study, DBSCAN was used to compare the effects of different
distance parameters (epsilon) on the point distribution patterns. As described
in the previous section, the data from the four outbreak years—2011 (1,089
cases), 2002 (4,188 cases), 2014 (12,897 cases), and 2015 (16,392 cases)—

was used for the comparison of the four distance parameter settings (based
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on scale levels 5-8, distance parameters were 203.125000 m, 101.562500
m, 50.781250 m, and 25.390625 m, respectively). Since the purpose was to
compare the distance parameters, the minimum point parameter was fixed at
3. Figure 9 presents the results.

For outbreak year 2011 (Figure 9, top row), some small clusters were
identified at scale level 5 (Figure 9[a]). At scale level 6 (Figure 9[b]), the
clusters were isolated, and various noises (not core points) appeared. At
levels 7 and 8 (Figures 9[c] and 9[d]), almost all points were identified as
noises. For outbreak year 2002 (Figure 9, second row), some large clusters
were detected at level 5 (Figure 9[e]), where some were great (in the
southern central area) and contained some low-density regions. At scale
level 6 (Figure 9[f]), the great cluster was split into several smaller clusters,
one of which captured a large high-density region. At scale level 7 (Figure
9[g]), the densely populated cluster remained a cluster, but many other
points were identified as noises. At scale level 8 (Figure 9[h]), almost all
points were noises. The critical scales were calculated as levels 5 (2011) and
6 (2002). The observations from the DBSCAN results aligned well with the
critical scale findings.

For outbreak years 2014 and 2015 (third and last rows), levels 5 and
6 (Figures 9[i]-[j] and 9[m]-[n]) presented some great clusters because
these two outbreak years contained numerous case points (around 12,000
and 16,000) in the study area. Using a relatively large search radius and
the same minimum number of point parameters results in many of them
being connected through core points. Compared to 2011 and 2002, which
contained around 1,000 and 5,000 points, the same distance parameters of
scale levels 5 and 6 did not seem to work in the situations in outbreak years
2014 and 2015. At levels 7 and 8 (Figures 9[k]-[1] and 9[0]-9[p]), several

clusters could be observed with the entire study area region, but the detail
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differences and patterns were not visible. A smaller region (the black box
area) in the city’s central region was thus zoomed in in Figure 10 to observe

the result.

a. 2011 scale =5 b. 2011, scale = 6 c. 2011, scale =7 d. 2011, scale = 8

i

f-\,ﬁ., /
\;,;.

2002 scale 7

‘W\

Figure 9. The clusters (red polygons) identified with density-based spatial
clustering application with noise (DBSCAN) using epsilon
settings of 4 scale levels (5-8) on the four selected years (2011,
2002, 2014, and 2015)

Note: 1. The square boxes indicate the range of the map in the next figure.
2. See the online version (https://doi.org/10.6191/JPS) for the full-colored figure.
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The cluster map of outbreak year 2014 at scale level 7 (Figure 10[a])
reveals some large clusters together with some smaller ones. At level 8
(Figure 10[b]), several point events became noises, and the clusters were
mostly isolated. For outbreak year 2015, more large clusters were found at

level 7 (Figure 10[c]). At level 8 (Figure 10[d]), some identifiable clusters

a. 2014, scale =7 b. 2014, scale = 8

P s BS
- “ -

500 m 500 m

c. 2015, scale =7 d. 2015, scale =

Figure 10. The zoom-in view of density-based spatial clustering application
with noise (DBSCAN) results for the year 2014-2015, based on
scale levels 7-8

Note: See the online version (https://doi.org/10.6191/JPS) for the full-colored figure.
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remained, and the number of noises seemed less than in 2014. Level 7
thus provided a better observation of the point patterns for outbreak year
2014, whereas for outbreak year 2015, levels 7 and 8 could be suitable for
exploring the clustering patterns.

According to the DBSCAN analysis, the comparisons and exploration
indicated that the distance parameter settings based on the critical scales
were potential and suitable options for identifying the cluster patterns.
Although the presented method cannot be used to determine a specific value
for the distance parameter, it can help narrow the distance range based on a

range near the critical scale.

IV. Discussions

In the context of disease outbreaks, when a small number of cases
occurs and these cases are distributed in different but neighboring districts,
they are usually considered a cluster—the related cases. However, when
many cases are scattered over the area, one is expected to be more
detailed in the exploration and description of the point distribution, which
necessitates using a finer scale of observation; indeed, grouping a large
number of cases into a single cluster would not help describe the spatial
distribution or provide insights for the community of stakeholders (e.g., the
public, decision-makers, or practitioners). One must therefore adjust the
analysis scales to analyze point events, which highlights the importance of
identifying the critical scales from the point patterns.

This study introduced a framework for analyzing point distribution to
calculate the critical scale. Using the PR-Qtree and the roll-off phenomenon
in the point scaling process, the study determined that the scale level before

the roll-off effect can capture point distribution’s comprehensive structure
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without being excessively fine, which may result in a dispersed and isolated
pattern. This study used KDE and DBSCAN, two clustering pattern analysis
methods, to demonstrate the changing scale levels’ effect. The two methods
take a search radius parameter (i.e., the bandwidth in KDE and the epsilon
in DBSCAN), calculate the density, and identify clusters using the search
radius as a key parameter. The two methods can thus provide a visual
assessment of the spatial patterns at varying scale levels. Based on the KDE
and DBSCAN analyses, the results suggested that one level above or below
the critical scale (£1) is generally sufficient to present the point patterns,
while the critical scale provides a better structure for the cluster patterns.
The results also suggested that the scale levels beyond the +1 range tended
to provide a non-effective observation of the point distribution.

This study used the fractal pattern perspective to establish a systematic
method for point pattern observation and discussion. The presented
analysis used the dengue fever cases in Kaohsiung City to demonstrate
point patterns’ various conditions. For example, in outbreak years 2011
and 2015, 1,089 and 16,392 cases were located in the study area. The
analysis scale of outbreak year 2011 was lower because the points were
more scattered compared to outbreak year 2015, where the points were
closer to each other. This difference means that in the case of outbreak year
2015, a coarser analysis scale may bring useless results and observations,
whereas in outbreak year 2011, a finer analysis scale would not bring more
information on the spatial pattern or even identify most points as noises.
The visual observation from KDE and DBSCAN highlighted the condition
that when fewer points occur, the spatial patterns that are calculated with a
larger search radius may offer a better pattern, while a shorter radius may
identify many isolated points. In contrast, when the points are dense and the

number of points is large, a shorter radius would identify more local clusters
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(non-isolated points), revealing more details on the spatial pattern, while a
large radius would connect several points as some large clusters. This study
therefore used the scaling process concept to identify a better viewing scale
for point distributions.

In this study, the PR-Qtree was used as the main tool to construct
points’ spatial indexes and represent the spatial scaling process, that is,
from the coarsest resolution with only one root node (box) representing all
data points to the finest resolution where each data point is separated in an
independent box. This spatial scaling process facilitated calculating the OB
and occupied ratio at different scale levels (i.e., the PR-Qtree depth). The
spatial scaling process based on the PR-Qtree divided the space into four
equal-sized quadrants, each containing a side length of half of the previous
box’s side length, which indicated a logarithmic relationship of the scale
level, as described in Equation (2). In other words, a log (with a base of 2)
relationship exists because the length size (Table 2) is divided by 2 while the
scale level is increased by 1. Although changes may be large on the linear
scale, it follows the traditional box counting method concept (Agterberg
2013; Raines 2008) that both axes (the horizontal axis as the length of
an individual box and the vertical axis as the number of OB) should be
converted to a log-log scale. The PR-Qtree’s tree structure was thus suitable
for analyzing the spatial scaling process.

In many studies, search radius selection is a key issue in the analysis
and depends mostly on domain knowledge or some traditional bandwidth
selection approaches. For example, disease clusters are commonly defined
as two or more cases (residential or working locations) occurring within
150 m or 250 m; for human activity-related studies, the distance is usually
set as the walkable distance (around 400 m). The search radius can also

be determined by analyzing the point pattern itself, that is, the Silverman
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(1986) and Scott (1992) methods for KDE and the elbow (knee) of the
k-nearest neighbor plot method for DBSCAN (Ester et al. 1996; Schubert
et al. 2017). Nevertheless, neither the domain knowledge approach nor the
bandwidth selection approach can capture the overall spatial pattern and
eliminate the situation of an overly coarse or fine scale of analysis. The
domain knowledge approach focused on the event, whereas the bandwidth
selection approach focused on the distance between each pair of points and
emphasized the statistical characteristics of the distances (i.e., second-order
analysis). These approaches do not aim to analyze the point pattern’s scaling
structure. This study thus presented an analysis method for analyzing the
scaling process and identifying the critical scale from point distributions.
Since the proposed framework was based on the box counting method,
it also inherited some issues from this concept, including the influences
of the study area’s size and the locations of the study area’s four corners.
The size of the entire study area determined the sizes of different scale
levels. The study area was repeatedly divided into equal-sized quadrants,
which means that the size of the entire study area influenced the boxes at
all levels. Similarly, the location of the study area’s four corners affects
the split of the initial four quadrants (i.e., the location of the study area’s
center point), which affects the four quadrants’ center points. This iterative
splitting process then depends on selecting the four corners’ coordinates.
These points and the study area size therefore also influence calculating the
OB. However, because the PR-Qtree data structure reduced the size of the

quadrants and the box length by dividing them by 2, the OB,

scale

were in log
scale. This division accelerates the speeds of increasing resolutions, which
reduces the influences of the study area size and four corners’ coordinates

through the quadrant splits and OB,_,.. In most cases, the influences of the

scale*

box issues may result in the critical scale shifting by one (£1).
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V. Conclusion

This study aimed to provide a framework for calculating critical scales,
which can be used to analyze point patterns. Various events in population or
urban studies were recorded in point coordinate data (e.g., diseases, crimes,
point of interests, and geotagged social media posts). The framework
proposed in this study can be applied to those data sets to identify the
critical scale of analysis. From the technical perspective, the critical
scale is calculated based on the spatial scaling process, which is based on
calculating the FDs (i.e., the box counting method). From the application
perspective, it captures the natural and intuitive choices for identifying
clusters. The natural selection of scales for identifying clusters can result
from the FD analysis that aims to reveal the complexity of a pattern—in
this case, the complexity of point patterns. When the disease case count is
low, the overall pattern is less complex, and lower scale levels can thus be
used to describe the spatial distribution. When many cases occur, the overall
pattern may become more complex, which necessitates using a higher
resolution to analyze and discuss the point pattern. One of this study’s key
contributions is therefore the framework for identifying the critical scale.

The following paragraph describes future directions for developing
this framework. First, more tests on the influences of the study area size
and corners are needed; although the influences are addressed theoretically
above, more statistical tests and analyses are required. Second, while the
critical scale suggested the scale for observation, further calculating a more
precise distance parameter around the critical scales is possible. Third, the
scales for observation concept does not have a commonly used index, which

makes validating the result difficult. Future researchers could develop a
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metric for exploring along the line. Fourth, the framework using the PR-
Qtree and box counting methods could be further discussed and tested with
the complete spatial randomness concept (Caballero et al. 2022). Fifth, more
theoretical and empirical spatial scaling analysis could be discussed (Batty
2008; Bettencourt et al. 2007). Sixth, the analysis process can only consider
the location of points (i.e., non-weighted point distribution). This study did
not consider points with weights (e.g., population, capacity of points, and
number of cases). Future analysis could expand on the current framework
for the weighted point data. These future studies could further enhance the

comprehensiveness of the analysis of point patterns’ complexity.
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Appendix 1. Derivative of Equation (2)
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